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We solve the problem of optimal (in a certain defined sense) stabilization of rotation of 
a gyrostat (a rigid body with three flywheels} whose Center of mass moves along a circu- 
lar orbit in the central Newtonian force field. 

In [l; 21 an analogous problem of stabilization of rotation of a. rigid body in inertial 
motion was solved, Problems of stability of positions of relative equilibrium of station- 
ary motions of rigid bodies and gyrostats in the Newtonian force field were studied in 
detail in c3-63. We know that the motions of a rigid body mentioned above can be sta- 
bilized by passive damping p; 81. 

1. Initial equations of motion, Strtsmrnt of the probhm, 
Using the notation of [I) we shall consider a symmetrical gyrostat, i. e. a rigid body 
with three flywheels (C,*= C, = C, I, = I, = I) moving in the central Newtonian 

force field (0, is the center of attraction and 0 
is the center of mass of the gyrostat). Equations 
of motion of the gyrostat [4, 51 admit the fol- 
lowing particular solution of the type of regular 
precession: the center of mass 0 moves in the 
X10,X2 plane along a circular orbit of radius 
At, with constant angular velocity @’ = o1 . 
The gyrostat rotates uniformly with relative 
angular velocity vp’==o about the axis of sym- 
merry 0~~ normal to the orbital plane, Two 
flywheels whose axes lie in the plane qOz, are 
at rest, and the third 
flywheel whose axis Table 1 

of rotation is 02, is 
either at rest or in 

1 4’ f x9’ 1 X8’ 

I I I Fig, 1 
uniform motion rela- 

tive to the body. Fignre 1 and Table 1 depict the following 
coordinate systems : O,X,X,Xa is inertial ; Ozlz,z, is rigidly xs 
connected with the gyrostat and its axes coincide with the axes 
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of the flywheels; OxjrO;rs’ are the Renal axes (the axis 0~s’ coincides with the axis 
of symmetry Uses of the gyrostat, OS%*, 0% liein the equatcrtfal plane US~,Z, and do not 
take part in the rotation of the gymstat about UZ, . The axes Oz,l, 0%’ are, in the case 
of a stationary motion discussed below, parallel KO the correponding axes 0,x,, 0,X, of 
the inertial coordinate system). The dashed lines denote the axes of the orbital c00roi- 
nate system directed alwrg the radius vector of the center of mass of the gymstat, tan- 
gentially to the orbit and in the direction normal to the orbital plane. Projections of the 
instantaneous angular veiocicy of the body pl, ps, ps on the Us%qx, axes and qI, Q2, qs 
on the Os~‘ss’zs’ axes are connected by the following relations: 

Pl =glOOficpx+qrsinrp,, p,==--ql~in'Ps+9~~~%~ ps = 9s + rpi 

&)I'= cp' + @$=I 

Let Y be the mass of the gyrostat, X1, X,, XB the coordinates of its center of mass in 
the UlX1X,X3 system, u the gravitational force function dependent on the coordinates 
X1, X,, X, and 0n the quantities &s, f&s, fits characterizing the position of the axis 
of symmeay OX, of the gyrostat in a stationary space p7. Using 0ur notation. we have 

u (Xl, 9% x.?, PI& pes* Bss) = + + + ++s--C)- W) 
3 x 

- 2 _Rr Ws - C) (X&s + X&S9 + XaIW, R== 

where x is the gravitational constant. 
The equations of motion of the gyrostat [I, 33 have the form 

MX", =auiax, (i= 1. 4, 3) W) 

Gri+ (C, - Cl 93% + Gtp,'% + P&3 - q&z* i gl' = Ix& 

CB' f (C - C3) qxq3 - CSiql+ qsgx - plgg + gs'= Mxel 11.3) 
cs (43 -I- %I f M, - wr, -f- g,’ = J&, 

81’ -+ ‘Ql’ + k2 + 192) VI’ = WI, Ba’ + Iq3’ - (gx + Iqd VI’ = w2 
g3’ + 13 (qs -+ cpr')' = WJ (4.4) 

Pii’ +9$&j - 9sPis * O (i pi is 2, 3) (i 8 3) (W 

Here g,, g2, g3 denote the relative kinetic moments of the flywheels brought to the 
OZ‘~~‘,Z’~ axes, and wl, wa, UJ~ are the new o011trol moments connected to the old mo- 
ments L(~, rts, ~ls by the fofbwing reiatfons: 

WI = u1 co9 qI - us sin ‘pIS w$ = u1 sin ‘pl 9 us cos qpl, w3 = us W) 

The gravitati0nal force moments M,,,, AT%,*, &I,,~ have the following form with respect 

to the 0~‘~~‘~ da axes P]: 

M,; = - r. -&B*,. 
t3 

A& = X $- Pii’ 
13 

Mx,< = 0 

On the basis of (1.1) we have 
MzT,* = 3% fC3 - C) (XX&~) (xX&$3,) R-3 

M 
(9.7) 

k’ - - 3% (Cs - C) (ZX&) (2X&&) IF, .W& = 0 

Let us HOW replace xi, x,, x3 with spherical coordinates of the! center of masSnamelY 
R,Y,Q, x 1 = R cos y cos CD, x3 s R cos Y sin Us X3 = R sin Y 

We note that the gravitational moments do not appear in Eqs. (1.4) desdbmg the 
rotation of the fiywhoeis, since the latter am sYmmetrio. 

The equations of the stationary motion under investigati~ are 
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R = Rot R’ = 0, ‘4 = 0, Y- = 0, Q, = alt, qs = o1 (1.8) 

9.27 

qi =o, P*k = 
1 

9p.I = a+@, 
(ink) 

0 (i+k) 
g1 = 6% =O, gs=ggo=const, wi=O (i,kmL%s) 

Here w is arbitrary and ox is related to U (1.1) in the following manner f3]: 

The subscript zero indicates that the function in question is computed for the station- 
ary mode (1.8). When o = 0 , we obtain the position of relative equilibrium of the 
gyrostat in a circulat orbit as a particular case. 

Equations of motion (1.2)-(1.5) admit (in addition to the trivial ones) three integrals 
expressing the constancy of the projections of the kinetic moment of the gyrostat on the 
UIXIXpXs axes 

Li + (Cq, + g1) Oil -4" (Cqz + gr) f-h + IG ((la; -I- cp'l) + gs1sis = hi 0 = i* 8.8) (1.9) 

where 
L1 = MRP (Y sin Q, - W sin Y cos I co5 0) (1.10) 

&, = - MRS (Y’ cos 0 + CD’ sin Y cos Y sin Cp), L, = MRSQ’ cos SY 

are the projections of the kinetic moment vector of the center of mass of the gyrostat 
on the O,XIX,Xa axes. 

Using Eqs. (1.9) we can eliminate [l J gl, gp gs from Eqs. (1.4) of rotation of the 
flywheels. Taking into account (1.2), we obtain 

(C - I) q1’ = - (c-l)Ps~l’ + (Pa + cPl*) z th* -Lj) Pi2 -qBB thi -$I P1, +"q' -lU1 

(C - I) 4a' = (C - I) q1qY - (qa c cpl’) E (hi - Li) p,i+ QlI: (hi - LJ p&+ A$+* - wr (l.W 

(CS - l8) (PS $- ~1’~ = 4~~ (hi - ti) Pir- qlI: (hi - Li) ais - 1M 

Equations (1,2),(1. li) and (1.5) now represent a closed system of transformed equa- 
tions of motion of the gyrostat in R, Y, Q, qjr Bib (8, k = 1, 2, 3). 

For the stationary mode (1.8) under investigation the constants hi are given by 

ho = h,O -_ 0, ho, = ~JWJJ, + c, (WI+ 0) + go, 
ASSUIT@ now that the motion (1.8) is unperturbed, let us describe the perturbed mo- 

tion by 
R,+R, R’, \ff, T, Wxt-!-@, tilf@‘, t+Pik (iwk) 

&k (t # k), hl, hz. k” + k8, Wi, (S, ?i = 1, 2, S) 
(h”=w - crawl) 

retaining the initial variable notation (hi are the initial perturbations of the kin&c 

moment of the gyrostat). 
Then on the basis of CL. 2). (1.11). (1.5) we obtain the following equations of perturbed 

motion corresponding to (L 8) : 

Yi (R, Y, CD, R’, Y’. W, R”. Y”, CD”, &, peS, pss, t) = 0 (i = 1, 2.3) 
91 * = LQs - (b + 0’) (Is + 0’2 h&z Jr 

+ &svsin2(ort+~)+2PBBvsin2(o~t+(P)+4+Q1+U1 
qe’ = (his + @*I q1 - htlqa - o* I: h&l - 

-221avLB1100SZ(~lr+~)-~vsin2(olt+~)+vz+Qe+~~ 
9s’ = hslqa - hsasl+va+ Qa 

(i.12) 

(1.13) 
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ki’ = Bit (i = 1,2,3), Pm’ = - PS + Brr. hi = 42 + &a (1 z 3) (cont. ) 

where 

The control moments ui are connected with wi by the following relations: 

(C - I) VI = - WI + o*Ic*, (C - I)ua = - w2 - @*hl* 

(C, - I,) u3 = - Q (1.14) 

and the terms of at least second order of smallness in 

R, R’, ‘F, y, @, q+‘t &k (it k =E 1, 2, 3) 

have the form 
(1.15) Bi1=4&a-P&a otst (i-1, %Sf 

(C - I) QI = 2 [h&l - r;l (TYPO + Ml f u,p 
(C - I) Qs = I: [W&r -I- ~2 W’h - Bin11 + u,p 

(Cs - la) Qs = z: (hi - tr) Bia 

L, = M (R, + R)” (Y sin (art + 0) - (w, f 0) sin Y Co8 y Cos (@zt f 011 
L* = - M (R, + R)$ [F co9 (o,t + 0) + (coy + 0.) SiIl Y COJ %f sin w +a 

(1.16) 

L, = M (R, + R)* (ml + cb’) cm “4 - MR,“% 

UlfR, Y,cD,t)= 3x 
cs-c - sin 2 Y sin (G&t + 0) 

2(R,+R)s C--l 
(1.17) 

LT2(R,yV,(p,t)z- 3x Cssisin2\1’c0s(or~+0) 
Z(R,+R)S C--I 

Here Li denotes the perturbations of the kinetic moment of the center of mass of the 
gyrostat (1.10) ; VIP, Ugs denote the terms of at least second order of smallness arising 
from the presence of the gravftational moments (1.7) and vanishing at 62; = 0 (i, k = 

= I, 2. 3). The terms tr,, t’s are also governed by (1.71, but depend only on the perter- 
bations in the orbit of the center of mass of the gyrostat. 

Equations of motion (1.12) of the center of mass are not written out in full since their 
explicit form is not essential in the arguments to follow. 

We formulate the problem of optimal stabilization in the following manner: to select 
the conlro~ vi as functions of the variables ~4, fiik describing the motion of the gyrostat 
about the center of mass (and possibly of the variables R, F, 0) so that the zero solu- 
tion R =O,0Czo,p’=o,ti’s:o,\p’=0==o 

Pi = 0, p*& = 0, h$ = 0 (i, b=~ 2. 3) (l.18) 

of Eqs. (1.13) is asymptotically stable in some of the variables 4jr &r and that some 
fnnctional a, 

5 
Q (ql, qs, qss. Bn, @~a;_.., ha, 17, Y, 0, R’, Y”, 0-e ~1, VG vs. t) dt 

0 

has a minimum. 

2, ~olutfon of the prablem af mbilitation undrrr the cosdttion 
that the orbit tr imjwturbrblo, First we solve the problem under the assump~ 
tion that the circular orbit of the anter of mass of the gyrostat is unperturbed, i.e. 
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R = 0, y = 0, 0, = 0, R’ = 0, T = 0, rp’ = 0, Lj = 0, u, - u, = 0 (2.1) 
III our opinion such a statement is not devoid of sense. since the perturbations in the 

circular orbit do not practically affect the conditions of stability of the stationary mo- 
tions of the rigid bodies and gyrostats [3-51 obtained under the assumption that the orbit 
is imperturbable, 

me linear part of the perturbed motion equations (1.13) with conditions (2.1) differs 
from the linear part of the corresponding equations obtained in [l] only in the presence 
of terms possessing periodic coefficients. The latter however substantially influence the 
character of the solutions obtained. 

We shall first consider an approximate system of equations [l] represented by Eqs. 
(I,. 13) and (2.1) with the nonlinear terms QIo, QzO, Q; omitted, and possessing the fol- 
lowing zero solution Qi 5 u, Fik F u 

(hk = 1,2, s) (2.2) 

( Qio denote the terms Qi (1.15) with conditions (2.1)). 
Continuing to use the notation of [I]. we shall define the integrand function &of the 

minimized functional as follows : 

az, = Fl fqp 92, qs, tf + Pa fPm 8127 --.v Bssr 4 -t 2% ~$2 -!- 

-i- Al c&Y Q2? qs* &11 612, 1---T 822~ 1) (2.3) 
Fx (Ql, Qa. Ps, t) = &l, (t) qi@?k (2.4) 

Here E;, F2 are positive definite quadratic forms with periodic coefficients. We seek 
the optimal Liapunov function Vc in the form 

2v* =2@,,+-r,k& (2.51 
2@0 = - 2%& + 2 m&i’ $_ 2 9x2 ‘%k (t) @fk + w&k (t) &k $2932: Yk (tf &k 

@k, = Pkl -I- &k -+ I: Bk&& = 0 (k,l=-~2,s; k<Zt 

Using the theorems due to Krasovskii [S] and Rumiantsev [lo] we arrive at the follow- 
ing partial differential equation for V” 

Collecting the coefficients of like second order terms, we obtain a system of linear 
differential equations which yield (jib, &ik, Cjk, Cik as funcdons of time and the basic 
parameters ki, rq, ni (i, k = 1, 2, 3). In the course of solving these equations we ought 
to choose the simplest particular solutions, Thus for Uik, bik, Ctk(eXcept for those corres- 
ponding to the indices 13 and 23) we obtain constant values from the solutions given in 
[l] by replacing o with co*. 

SOlUtiOSlS for rtjs, bjs, CjS (i = 1,2) are the sums of the COIIS~~S &is*, bjs*, Cja* and of 
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20~ -periodic functions, the latter eontrolled by the central force field 

Ojs = “j8* + KjS COS 2 COlt + Lj3 sin 2 Olt 
bj, = bja’ + Mja cos 2 Olt + Nja sin 2 ult 
Cj3 a Cj3' cj -1. 3) 

The rehvant calculations are fairly straightforward. 
The coeffktenu eilr (t) of the form FI are given by 

(2.71 

4% -I- “rt - am = ellt dr2% -I- b3, - b18 = ea2, d&z, f cl, - czl = es, 
(4, + a*) (ml - ms) - ~13 + au - b,, + b,, = 2~13 

-Jwh + b3m3 - azl + Cl3 - C33 + ~3, = 2e13 (2.8) 
hum, - h=m, - bal -I- b,, - cl1 + csl = 2e,, &$ - milm+ f = 1.~) 

The SOlutiOnS C%fk, bfk, Cikv Cik obtained are such that for sufffciently large 4 the func- 
tions Vo (2.5) and FI (2.4) are positive definite. 

The form F, (&+ Pl,, . . . . Bss, t) is obtained in accordance with (2.5) and (2.6) in the 
form 

P-9) 

We find its sign by relaclng [l] the dependent variables bfk with the independent 
ones, namely Krylov’s angles 13 and $ 

& = - I& = (I, + . . . , Bs, = - B33 = 0 + . ..t B31 = 0 (2.10) 

(where the dots denote terms of higher order of smallness). 
Assuming for simplicity that 4 P k, m, = m, ni 2: n, 4 = d (I = 2, 2, 3) , and that 

d is sufficiently large, we can wke the principal terms of the solutiona qk, b3k, Cik just 
obtained as 

k-mv 
ala = m+sin2mt+..., bu=- 

d 
-mpx32o1t + . . . (2.11) 

k-mu 
ag=- _-‘R+c~2~ltf..., bu=-m+sin2~~t+~.. 

bS1 = - k + Ink@* + . ..( k-kd-* f... 
d 

aSS= 
d 

(the remaining coefficients of afkc bfk, cik eftller lx&g equal to zero, or beginning with 
terms containing in their denominators d of degree higher than the first). with (2. lo), 
(2.11) taken into account the form (2.9) becomes 

F, (9,9, t) = A, (41 + fP) + AI ($ sin alt f 6 cos olV + A, (9 cos tilt - 
- 0 sin oIt)* + IS@, (e, 4, t) (2.12) 

AI ip (2 k - mv)’ - (mhw~*)~ 

Aa = .$! (2k + n&w* - 2mv) 

Here 8 is a small parameter, the dots denote the terms of at least third order of srnall- 
ness which do not affect the sfgn of F,, the functico QI is a quadratic form in cp and 9. 
The fu~tfon F, is positive definite [9. 111 provided that Aj > 0 (i q I, 2, 3), i.e. 
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(2k - mv) s - (m&o*) 2 - 4kmv + 3m*v* > 0 
v (2k - mv) > 0, v (2k i- mk,,o* - 2mv) > 0 

(2.13) 

which yield the following inequalities under the assumption that k > 0, m > 0 

v > 0, mv > 0, 2k + mh,,o* - 2mv > 0 (2.14) 
(2k - rtft)*l (mh,,o*)* - 4kmv + 3mZv* > 0 

The first inequality expresses the connection between the moments of inertia of the 

gyrostat Cr > C (2.15) 

(an analogous condition is obtained in [6] for the conventional stability of the body in 
the case when o = 0). while the remaining inequalities connect the quantities o*, h, 

with the initial parameters k, m. We note that in a real problem where R0 is large, v 

is sufficiently small (of the order of i&s). Assuming for simplicity that gaD = 0 (the 

flywheels in the unperturbed motion (1.8) are at rest) we find that for v - 0 the second 

inequality of (2.14) is satisfied identically, while the third and fourth inequality lead to 

the relation [l] I h,,o* I < 2klm (2.16) 

which for fixed k and m, restricts the choice of the angular velocities o*, and of the 
region in which the initial perturbations h, are admissible. 

The inequality (2.15). however, which is influenced by the central force field remains 

valid, and this is where the real difference lies between the present problem and the 

problem studied earlier in [l). Taking into account the remark made above concerning 
the functions Vo and F,, we conclude that for sufficiently large d and under conditions 

(2.14),(2.15), the functions (2.3), (2.5) obtained satisfy all the requirements of the theo- 
rems in p, lo], and consequently solve the problem of optimal stabilization of the motion 

(2.2) by virtue of the approximate system of equations obtained from (1.13).(2.1) by 
setting QIo = 0,” = QS” = 0. The principal terms of the function a, (2.3) should be 
taken in the form Al E - 2 (ql@ik + Q&k + 4%ik) &k 

With (1.6), (1.14) and 
1 avO vi0 = - - - 

2ni aqi 
(i. = 1, %3) 

taken into account, the required optimal control has the form 

uIo = o* (hs cos o+t - hr sin o*t) + (C - I) ( daqt sin o*t + 
L 

+ dlql cos o*t + &- 
1 

(&k&k) COS O*t + $ (Zbik /%v)sin CO*&] 
2 

w” =- 69 (hzsino*t + hlcm o't)+(C--)Id2qzcoso*t - 

- dlql sin m*t - i!- 2nl (%ik&k) Sin O*t -j- &- (&k&k) Co8 @*t ] 
2 

U2O =(Cs- Is) dsqs+ 
i 

Y& Zcikhk (2.17) 
s . ) 

It can easily be seen that the optimal Liapunov function (2.5). and hence the optimal 

control (2.17) with the conditions (2.14) and (2.15). solve the problem of stabilization 

of the motion (2.2) by virtue of the nonlinear equations (1.13) and (2.1) if the integrand 
function (2.3) is replaced by 

P=Pr-_gQi* (2.18) 
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the latter possessing additionat terms of at least third order of smallness. 

3. Coraplotr solution ef thr problem of ttrbilitrtion, Let uscon- 
sider the exact equations of perturbed motion (I, 13) with respect to the variables R, YT, 

@, qi, &k, G, k = 1, 2, 3) and write the required CCXIOO~ vi as a sum of two controls 

ui = vi* + vp (q = w* + UP) (i = 1, 2.3) (3.1) 

one of which depends only on the phase coordinates of the stabilized body, and the other 
only on the perturbations I?; Y, CD of the orbit. We shall calf the second equation cor- 
rective and set it in advance 

Vj” 5 - uj (j -1. s>r v8* =o (3.2) 
We shall seek the basic oontrol vi’ according to the method developed earlier and 

use the Liapunov function (2.5) obtained in Sect. 2, i. e.we shall apply the corresponding 
control ‘ho as given by (2.37). The integrand fnnction of the minimixed functional will 
become 

Here Qi are determined in accordance with (1.15), (1.16). Function 51 must be posi- 
tive definite in pi, f&k. However, it is now also dependent on the variables A, ~IT,@,&‘,YT’, 
QI’ which appear in the terms of at feast third order of smallness and may, in principle, 
disturb the sign definiteness of P, fJ. 31. The principal part of s& consists of a sign defi- 
nite quadratic form in qj, &, while the principal part of the sum appearing in (3.3) 
contains a quadratic form in 45, l&r of variable signature, whose coefficients are arraly- 
tic functions of ~~a~~ B, VP, 11’, PT’, ip’ v~~~~g when R 5 0, Y = 0, R’ = 0, 
‘H’S@ = 0. when the penurbotfcms are small the above coefficients are arb&rarily 
small, consequently the function B is positive definite Es’] in qt, &. So the control 
(C&l?), (3. l), (3.2) fs the solution of our problem of stabiltzation of motion (1.181, pro- 
vided that the center of mats of the gyrostat moves along a stable circular orbit. 

To prove that the motion (1.13) is stable in Ii, Tp, R’, zy’, CD’, we shall use the mduc- 
tion principle Es, 12], regarding the variables R, 1y, R’, v’, @’ as critical, and 4i, f&k as 
noncritical. According to this’grinciple, the problem of stability can be solved using the 
“abridged” system of equations in R, Up, R, \Y’, cp’ given by (1.12) with the following 
conditions : 

Qi = 0, hk=O (i, k = 1.2.3) (34 

The abrfdged system of equetiona describes therefore the motion of the gyrostat in a 
central force field in the absence of internal controls dependent an qit flik* Stability of 
the zero solution 

R = 0, y E 0, j$’ = 0, ‘y’ = (D’ = 0 (3.5) 

of this system with respect to R, Y, R*, T, @ can easily be established with use of the 

Liapunov function PI 

composed of the energy W, and the kinetic moment W, integrals relative to the 4X, 
axis. Calculations performed indicate that for su~cien~y Large G > 0 the function W 
is positive d&site in all the variables listed above. Stability of the soiutkm (3: 5) 
implies the stability of the motion (1.18) in all variablas by virtue of the complete 
equations (1.13). Thus, after slight alterations, we can use the Liapunov function (2.5) 
to obtain the control uoi (3.1). We note that the motion fl.8),(1.18) considered is not 
stable in Q, since an arbitrarily small perturbation CD’ = ho, leads to the increase in 
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the value of 0 according to the rule 
Q = (ho,) t (3.7) 

The variable @ appears only as the argument of the bounded functions sin (wlt -t- @) 
and cos (o,t + 0). This does not violate our previous deductions based on the stability 
of the stationary motion under investigation with respect to the variables R, I, R' 'P', @', 
but makes necessary the replacement of the argument o,t + Q, of the periodic functions 

in (1.13) by (ol + Au,) t. Therefore instead of the coefficients ajsv bjs, cjs 0’ = 1, 2) 

of the Liapunov function (2.7) we have ajs (Am), bj3 ( Aw), cjs(AoJ where the argument 
o,t has been replaced by (ol + ho,) t. This also applies to the functions (1.17),(2.3). 

Consequently the control (2.17). (3.1). (3.2). i.e. 

u1 = u,” (&) + (C - I) [V, (Aq) cos o*t + U, (Aq) sin o*tl 

ut.= us0 (A@,) + (C - 1) [- V, (Aal) sin o*t + Us (Aq) cos o*t] 

us = ug’ (Aq) 

ensures under the conditions (2.14). (2.15) optimal stabilization of the motion (1.8). 

(1.18) ; the integrand function of the minimizing functional has the form (3.3). We note 
that in practice, when R, is very large, the corrective control (3.2), (1.17) stipulated by 

the perturbability of the orbit of the center of mass of the gyrostat can be arbitrarily 

small and has no practical significance. 

The present paper deals with optimal stabilization of only on,e of the possible stationary 

motions of a gyrostat and employs internal control moments, however the method deve- 

loped makes possible, in principle, solution of the problems on stabilization of various 

positions of relative equilibrium and of stationary motions of a gyrostat in the Newtonian 
force field. 
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As we know, the solution of the equations of motion of a heavy rigid body about a fled 
point in the Hess’ case 

er 7 A (B - C) + es ji7?) = 0, es = 0 

(A, 3, C are the principal mornants of inertia and cl, 4, es are the c#r&uid~ of the! 
center of graviry of the body) is not redacMe to quadratures ; it is reduced to the solution 
of the Ricwti differential equation . Thh complicates ~~~g~~~ of the bang 
motion considerably. 

A general qualitative pattern of motim of a body was first g&en fait the Hess* Case 
by N. E. Zhukovskit [rl and followed in more detail by Kovalev [2,33 who empeed 
the m&od of moving hodojpph ( l ) . 

However both tI#bse geometrical int8rptetatians are fairly ComplicatBd, and g&e rise 
to severe difficulties when it comes to determining the motion of a specific rfgld body 
under concrete initial conditions. 

In the present paper we study the Hess’ case of pie motion of a dgid kwfy u@da the 
assumption that at the initial bstant a high angular vebcity O,J about SOI’M axis, is fm- 
parted to the body. We obtain explicit relations owlnecting the Euler angles with time, 
and these en&e us to analyze in detail the mot&m of the Hess gy~osoope witbut much 
difficulty. 

1. We construct the equations of motion of a rigid body in the asociat@d rect&ngulU 

coordiDate system OZ~Z whose Oz-axis passes through the center of gxatiry of the body, 
while the Oy and OZ axes are chorukn in such a manner (this Is always pss%le in the 
Hess cape [4]) that the expruaion for the kinetic ermrgy of the body beCamdS 

2T = u# + 0 (PO + z*) - 26p 
61 = A, %,&a) -It a=A;,& = A, (AuAm) -I 

Here 3, y, z are the projections of the kinetic moment of the body on the Ozyz axes. 
and AXi, AI,, A,#, Am are the components of the corresponding inertia temm for which 
the relation AIS% = AXE (Aal - A,) holds. 

We also note the following expressions for the prcrfeCtionS ol, % WS of the Angus* 
velociry : ai.= - by, 0, = ay, WJ - uz 

l ) Sea also A, M. Kodev*s “GeometdWl ~gad~ of ukrtain solutfoad of the pbiern 
of motion of a bady with a fixed point”,Candidaoc?*s dbsertatiun, DoIlbuLllt State Univ., 
1969. 


