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We solve the problem of optimal (in a certain defined sense) stabilization of rotation of
a gyrostat (a rigid body with three flywheels) whose center of mass moves along a circu-
lar orbit in the central Newtonian force field.

In [1, 2] an analogous problem of stabilization of rotation of a rigid body in inertial
motion was solved, Problems of stability of positions of relative equilibrium of station-
ary motions of rigid bodies and gyrostats in the Newtonian force field were studied in
detail in [3—-6], We know that the motions of a rigid body mentioned above can be sta-
bilized by passive damping [7, 8]

1, Inftial equations of motion, Statement of the problem,
Using the notation of [1] we shall consider a symmetrical gyrostat, i, e. a rigid body
with three flywheels (€= C, = €, I, = I, = I) moving in the central Newtonian

force field (0, is the center of atraction and O
\ X,  is the center of mass of the gyrostat). Equations
of motion of the gyrostat [4, 5] admit the fol-
z lowing particular solution of the type of regular
@ R, / precession : the center of mass O moves in the
7 X,0,X: plane along a circular orbit of radjus
Ry with constant angular velocity @' = o, .
J The gyrostat rotates uniformly with relative
< *  angular velocity ¢'=@ about the axis of sym-
— metry Oz, normal to the orbital plane, Two
50), ¢ flywheels whose axes lie in the plane z,0z, are
at rest, and the third
X,  § .Z‘; flywheel whose axis
of rotation is Oz, is t %' I x' K T
Fig, 1 either at rest or in

b

Table 1

uniform motion rela~ g Bu | B | Bus
tive to the body. Figure 1 and Table 1 depict the following X} Ba Bas
coordinate systems: 0,X,X,X, is inertial; Ozz,zy is rigidly Xs! Bn | Bs

connected with the gyrostat and its axes coincide with the axes



926 V. V, Krementulo

of the flywheels; Oz,’zyzy are the Resal axes (the axis Qzy coincides with the axis
of symmetry Oz, of the gyrostat, Oz,’, Oz, lie in the equatorial plane Oz,z, and do not
take part in the rotation of the gyrostat about Uz; , The axes Oz, Oz, are, in the case
of a stationary motion discussed below, parallel to the correponding axes 0,X;, 0, X, of
the inertial coordinate system). The dashed lines denote the axes of the orbital coordi-
nate system directed along the radius vector of the center of mass of the gyrostat, tan~
gentially to the orbit and in the direction normal to the orbital plane. Projections of the
instantaneous angular velocity of the body pi, ps, Ps on the Oz x,%s axes and G % s
on the Gz,z,'zy’ axes are connected by the following relations:

Py = ¢ COS @; + q;sinQ)l, Py = — 8D Py -+ ¢aCOS Py Ps= s + @y

(' = ¢ + O"Bs)

Let M be the mass of the gyrostat, X;, X, X5 the coordinates of its center of mass in
the 0,X;X,X; system, U the gravitational force function dependent on the coordinates
X,, X,. X; and on the quantities B,;, B, By characterizing the position of the axis
of symmenry Oz, of the gyrostat in a stationary space [3]. Using our notation, we have

U (Ii’ x!; x& 8131 3”‘ 833) el ‘K“-Rg. +_§— %’(Cgﬂ” C) - (1'1)
3
-7 '1‘%- (Cs — C) (XiB13 -+ XaPas 4~ Xafes)?, R = U+ Xt 4 Xt

wiiere x is the gravitational constant,
The equations of motion of the gyrostat [1, 3] have the form

MX* =080 /03X, (im1,2,3) (1.2)
Co' + (€5 — C) @a83 + Co®r'q + 0afs — 0afs + 63 = M,
Ca’ +{C — C3) @19 — Ca® 'ty + 9281 — 0:8s + 82 = M, 1.3)

Cs (g + ) + @182 — ©28y + &5 = M,
g g (gt I 0 = wy g I — (6 + T @ = wy
g3 + I3 (g + 1) = w, (1.4)
Bt —{-‘-qu‘a-— qsﬁia =0 (=123 d23 (1.5)

Here £, €» £ denote the relative kinetic moments of the flywheels brought to the
Or'1z’22's axes,and w,;, w,, w, are the new control moments connected to the old mo-
ments uy, u,, u, by the following relations:

Wy == Uy CO8 @y — Uy SID @y, Wy = uy SID @ * Uy COS @y, Wy = Uy

The gravitational force moments M., M., M, have the following form with respect
to the Oz ,z% 2’5 axes (3]: oU

U
Mxi' =32 agm Bi‘z' Allxz' =2 —éF‘; Bii’ A{xa' =0

On the basis of (1. 1) we have
M, =3x(Cs—C)(2X B) (BX By BT

M, =—3x(Cs—C)(ZXB;) SX B RS, M, =0
Let us now replace X, X,, X, with spherical coordinates of the center of mass, namely
RY, 0 X,=Rcos¥cos®, X,==RcosV¥sin® Xg=Rsin¥

We note that the gravitational moments do not appear in Egs. (1.4) describing the
rotation of the flywheels, since the latter are symmemic,
The equations of the stationary motion under investigation are

(1.6)

@a.7
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R=Ry, R=0,%=0,%=00=o0y¢® =0, (1.8)

. 1 (3 =k)
Q"1 = 0+ O, qi=0, Bik={0 i 9 k)

1= 8 =0, gg=gs° =const, w; =0 (i k=123

Here o is arbitrary and w, is related to U (1.1) in the following manner [3]:

0= e (.‘?_‘:’_
T MRy, \oR ) 0

The subscript zero indicates that the function in question is computed for the station-
ary mode (1. 8), When @ = 0 , we obtain the position of relative equilibrium of the
gyrostat in a circulat orbit as a particular case.

Equations of motion (1.2)—(1, 5) admit {in addition to the trivial ones) three integrals
expressing the constancy of the projections of the kinetic moment of the gyrostat on the
01X1X2X g 4Xes
Li+ (Cgy+ 8) B =+ (Cap + &) Bio 4+ [Cs (g5 + 971) + galBin=h; (=128 (1.9

where
Ly = MR?* (¥ sin @ — @' sin ¥ cos ¥ cos @) (1.10)

Ly = — MR? (¥ cos @ + @' sin ¥ cos ¥ sin @), Ly = MR2D' cos ¥
are the projections of the kinetic moment vector of the center of mass of the gyrostat
on the 0,X,X. X, axes,
Using Egs. (1. 9) we can eliminate [1] £ £ 85 from Egs. (1. 4) of rotation of the
flywheels, Taking into account (1,2), we obtain

(C—DNa'=—(C—=1)q91"+ (g5 +P1") Z(h; — L) Bjy — q2Z (h; — L)) By + M, —n
(€= 1) 45" = (€ — 1) 91" — (s -+ @) Z (hy — L) By+ 012y — L) Byt Mo, — 1 (1.44)
(Cs - 13) (¢s + q}l.). = 932 (hi - Li) Bﬂ"" qlg (hi — L,) Big — ws

Equations (1, 2), (1. li) and (1. 5) now represent a closed system of transformed equa-
tions of motion of the gyrostatin R, ¥, @, ¢, By (i, £ = 1, 2, 3),
For the stationary mode (1. 8) under investigation the constants k; are given by

e = by =0, h°s = MRg0, + Cs (0 + 0) + g%
Assuming now that the motion (1. 8) is unperturbed, let us describe the perturbed mo-
Honby g 4R R, ¥, ¥, e4®, o+, L4Bx a=h
Bik (i 43 k), }ll, hy, HR° + hs, Wi, (iL,k=1,8, 3)
{h® == he® — MR %)
retaining the initial variable notation (k; are the initial perturbations of the kinetic
moment of the gyrostat),
Then on the basis of (1.2), (1,11),(1. 5) we obtain the following equations of perturbed
motion corresponding to (L, 8):
Yi(R, V. QR ¥, ¢, R", V", @, Bis, Bes, Bes, 1) =0 (5me1,2,3) (1.12)
g1’ == h1pgs — (h1s 4 ©%) g2 4 0" Z hyByn -
~+ Brvsin 2 (w1t + @)+ 2 Byvsin? (ot + Q) + 014+ Qi1 4- Uy
g2’ = (M3 + ©*) g1 — hnigs — ©° I hyByz (1.13)
— 2 B1sv c08? (012 + D) — Beav 5in 2 (@12 + @) + v2 + Qo+ Us
93 = ha1gs — haaqr + v+ Qs
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B =By (i==1,2,3), P’ =—gs+ B, By =gz + B1s 123) (cont, )
where
hj = Ry hj = f=1.2 hv+ks=nk \'zi—_&CB—C
g =M g MU=t I YT T R T
@ =014 0
The control moments ; are connected with w; by the following relations:

(€ — Dy = — wy + @%hy, (€ — Nva = — w, — 0%k,
(Cg — Is) vy = — wy (1.14)

and the terms of at least second order of smallness in
R, R, V¥, v, (I)" qi.! gik (i' ko= 19 2& 3)

have the form
Bn=qPp—qs (23 (=123 (1.15)
(C=D) Q=2 [hBi— Li (0*Be + Bp)] + U
(C —1I) Qu=n Z [Bys I Lj (0*Bn — By) + Uy
(Cs = Is) Qs = Z (h; — L) Bis
Ly = M (Ry + R {¥ sin (0, + @) — (0, + @) sin ¥ cos ¥ cos (@ + OV

%m—MMﬁ%Wme@Mm+M$¢MmWm?ﬂ@w%ﬂm
(1.16)
Ly = M (Ro + R) (0, + @) cos *¥ — MRy,
- 3 C3—C in 2 ¥ sin (@t + @ 147
Ui{R, ¥, 0,0 TR TR =T sin 2 ¥ sin (@t + D) (1.47)
Us(R,¥,®, 1) = — 5% C3~ Cin 2 ¥ cos (it + D)

I(R, AP C—1

Here L; denotes the perturbations of the kinetic moment of the center of mass of the
gyrostat (1,10); U,,, U,g denote the terms of at least second order of smallness arising
from the presence of the gravitational moments (1. 7) and vanishing at f;; = 0 (i, k =
=1, 2, 3). The terms U,, U, are also govemed by (1. 7), but depend only on the pertur-
bations in the orbit of the center of mass of the gyrostat,

Equations of motion (1.12) of the center of mass are not written out in full since their
explicit form is not essential in the arguments to follow.

We formulate the problem of optimal stabilization in the following manner: to select
the controls v; as functions of the variables g;, f;; describing the motion of the gyrostat
about the center of mass (and possibly of the variables R, ¥, @) so that the zero solu-

tion R=0,0=0¥=0R=0%=0=0
=0, Ba=0 h=0 (@ kea,29 1.18)

of Eqs. (1.13) is asymptotically stable in some of the variables ¢;, Pix and that some

functional ® o
S Q (‘h. 9, 93, But B"ﬂ;-"v 33& R, ‘P, (D: R, ¥ ¥ D, v3, v, vs, t) dt
o

has a minimum,

3. Solution of the problem of stabilisation under the condition
that the orbit {s {mperturbabdle, First we solve the problem under the assump-
tion that the circular orbit of the center of mass of the gyrostat is unperturbed, i. e.
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R=0,¥=0,0=0R=0Y¥=00=0L=0U=U0=0 (21

In our opinion such a statement is not devoid of sense, since the perturbations in the
circular orbit do not practically affect the conditions of stability of the stationary mo-
tions of the rigid bodies and gyrostats [3~ 5] obtained under the assumption that the orbit
is imperturbable,

The linear part of the perturbed motion equations (1. 13) with conditions (2, 1) differs
from the linear par of the corresponding equations obtained in [1] only in the presence
of terms possessing periodic coefficients, The latter however substantially influence the
character of the solutions obtained.

We shall first consider an approximate system of equations [1] represented by Egs.
(1,13) and (2.1) with the nonlinear terms @,°, Q,°, Q;° omitted, and possessing the fol-

lowing zero solution g =0, B =0 Gk =1,2,3) (2.2)

( Q;° denote the terms Q; (1, 15) with conditions (2.1)).
Continuing to use the notation of 1], we shall define the integrand function Q, of the
minimized functional as follows:
Q= Fy (1 o @3 O+ Fy Bras Bugs s Bagy U T Zn; o+
-+ A1 (91 9 93 Bure Bro aeees Bsan 8) 2.3)
F1(g1, 92, 95, t) == Zegx (1) 049k (2.4)
Here Fy, F, are positive definite quadratic forms with periodic coefficients, We seek
the optimal Liapunov function V< in the form

2V =20, + 2 k04 @5
2@0 = — 2Zk;By; -+ T mi® 4 2 91 D agx (2) Bix 4 2028byx (2) Byx + 2052 5k (2) Bix
D =By + B +ZByBy =0 (el =1,2,8 k<D

Using the theorems due to Krasovskii [9] and Rumiantsev {10] we arrive at the follow-
ing partial differential equation for V°

ave ave\2
S )+ 2 o

+ 0" 3 by By, + Busv sin 2nt + 2Bag sin? opt ] + (2.8)
+ 4 [(hn + 0%) g1 — hugs — 0% 3} hBia — 2 Bigv cos? 0yt —

—_ Bgs‘v sin 2 (Dlt] + T (hqu hsgql) + _8%;; ém_) 71 +
+ ( ave  gye at
% o) " (e ) 0+ 3 g B+
+ F1{91, 92, 95, t) + F3 (Bu, Brs, .. Bs, ) + A1 (g1, g3, g, ﬁn, Bizrens, Bas, B} =0

Collecting the coefficients of like second order terms, we obtain a system of linear
differential equations which yield a;, by, ¢k eix as functions of time and the basic
parameters k;, my, ny (i, k = 1, 2, 3). In the course of solving these equations we ought
to choose the simplest particular solutions. Thus for a;x, bk, cik(except for those corres-
ponding to the indices 13 and 23) we obtain constant values from the solutions given in
[1] by replacing o with o*.

Solutions for o5, bjs, 253 G = 1,2) are the sums of the constants a;*, bjs*, ¢j3* and of
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2wy -periodic functions, the latter controlled by the cenmal force field
ajs=ajs* + Kjscos 2t + Ljssin 2 oyt (2.7)
bjs = bjs* + Mjsco8 2 it + Njssin 2 wyt
cjs = C5° (Gm1,2)
The relevant caiculations are fairly straightforward,
The coefficients ¢;; (1) of the form F; are given by

dyny + g3 — 33 = €33, Gy?Ry + by — byy = ey, ds®ng + c19 — e = e
(hys + ©%) (my — mg) — aj3 + am — by + byy = 2¢y,
—hamy + heamy — a5 + 8y — 33 + oy = 2¢5 (2.8)

hum, —— hums — b21 + blﬁ — C18 + 031 = 2823 (d{*miMi; im=1,2,3)

The solutions ajk, bik, cix» ¢;x obtained are such that for sufficiently large d; the func-
tons V° (2.5) and F; (2.4) are positive definite,
The form F; (Byy, Bigs .-~ Pss» 2 is obtained in accordance with (2, 5) and (2. 6) in the
form
1 1
Fy= e (ZagBa)® + I (ZbyBik) + Z%} (ZegBue)® + (2.9

+ [0 ThyB +- vBis (1 + cos2 wrt) - v3s; sin 2w1¢] (ZhyBix) —
— [@*Zh1Bis + vBrs sin 201t - vPas (1 — cos 2ant)] (BazxBin)

We find its sign by relacing [1] the dependent variables f;, with the independent
ones, namely Krylov's angles 0 and ¢

Bs=—Bu=9%+ .., Pu=—=Pu=0+ .., Bn=0 (2.10)
(where the dots denote terms of higher order of smallness),
Assurning for simplicity that & = k, my = m, n; = n, d; = d (i = 1, 2, 3) , and that
d is sufficiently large, we can write the principal terms of the solutions a;x, bik, cix just
obtained as

an=='-'-'}-sin2mt+.... bu=k';mv-’-n£-6052®1¢+--- (2.11)
o= — BTV T cos 2ot 4, b= —Tpsin2end

. k -+ mhuso®
bt g bbmhet

(the remaining coefficients of @ik bik) cix either being equal to zero, or beginning with
terms containing in their denominators d of degree higher than the first), with (2.10),
(2.11) taken into account the form (2, 9) becomes

Fq (0,1, 1) = A, (§® + 6%) + A, ( sin o2 -+ 0 cos 0y8)? + 45 (P cos oyt —

— O sin 0,2)% + e®, (6, ¢, ¢ (2.12)
4, =C k— m‘v);d; (mhis0*)® _2?_ + 3nw?
Ay = _23". (2k — mv), Ay = .%‘i (2k + mhisa® — 2mv)

Here ¢ is a small parameter, the dots denote the terms of at least third order of small~
ness which do not affect the sign of F,, the function @, is a quadratic form in « and 6.
The function F, is positive definite [9, 11] provided that 4; >0 ( =1, 2, 3), i.e.
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2k — mv) 3 — (mhyy0*) 2 — 4kmv + 3m:v2 > 0 (2.13)
v (2k — mv) >0, v 2k + mkg0* — 2mv) >0

which yield the following inequalities under the assumption that ¥ >0, m > 0
v>0, 2k — mv >0, 2k + mhygo* — 2mv >0 (2.14)
2k — mv)? — (mhyg0*)? — 4kmv 4 3m*v: > 0
The first inequality expresses the connection between the moments of inertia of the
gyrostat C:>C (2.15)

(an analogous condition is obtained in [6] for the conventional stability of the body in
the case when © = 0), while the remaining inequalities connect the quantities ©*, A,
with the initial parameters k, m. We note that in a real problem where R, is large, v

is sufficiently small (of the order of 4/R,%). Assuming for simplicity that g;®* = 0 (the
flywheels in the unperturbed motion (1, 8) are at rest) we find that for v — 0 the second
inequality of (2,14) is satisfied identically, while the third and fourth inequality lead to
the relation [1] | higo* | < 2k/m (2.16)

which for fixed k and m,restricts the choice of the angular velocities w*, and of the
region in which the initial perturbations k; are admissible,

The inequality (2, 15), however, which is influenced by the central force field remains
valid, and this is where the real difference lies between the present problem and the
problem studied earlier in [1]). Taking into account the remark made above concerning
the functions V°and F,, we conclude that for sufficiently large d and under conditions
(2. 14),(2.15), the functions (2, 3), (2. 5) obtained satisfy all the requirements of the theo-
rems in [9, 10}, and consequently solve the problem of optimal stabilization of the motion
(2.2) by virtue of the approximate system of equations obtained from (1.13),(2.1) by
setting Q,° = @,° = @s° = 0. The principal terms of the function Q, (2.3) should be
taken in the form Ay = — Z (918;k + 92bik + gacix) Bik

with (1. 6), (1. 14) and . L ave

Vi == o e ——— i=1,2,3
b 2ni 6qi ¢ 1 )

taken into account, the required optimal control has the form
u;° = ©* (k2 cos @*t — kysin w*t) + (C — I) [dﬂz sin 0*t -
~+ dig1cos o* + A (Za;xB;x) cos 0*t + L {Zb;); Bix)sin co"‘n:]
2":1 Z.ng
ug® =— 0% (hy sin 0*t + hi1cos w*t) +(C —1I) [daqz cos w*t —
— dyg1 sin @M — (Za;xB;x) sin 0* + L (Zb;xBix) cos w*t ]
2n1 2n2
us® = (Cs — I) ( dsgs + zir zc,-,,aik) @47
3 .

It can easily be seen that the optimal Liapunov function (2, 5), and hence the optimal
control (2,17) with the conditions (2,14) and (2. 15), solve the problem of stabilization
of the motion (2, 2) by virtue of the nonlinear equations (1.13) and (2, 1) if the integrand
function (2. 3) is replaced by ave

Q= — ;* 2.18
1 2 ‘Tq" Q‘l ( )
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the latter possessing additional terms of at least third order of smallness,

38, Complete solution of the problem of stabilization, Let uscon-
sider the exact equations of perturbed motion (1, 13) with respect to the variables R, ¥,
D, g5, Bir (i, k == 1, 2, 3) and write the required control v; as a sum of two controls

vi=0*o* (=t ) (iw1,2,3) (3.9)

one of which depends only on the phase coordinates of the stabilized body, and the other
only on the perturbations R; ¥, ® of the orbit, We shall call the second equation cor-
rective and set it in advance
vi¥es —U;  (jem12) n*=0 3.2)
We shall seek the basic control u;° according to the method developed earlier and
use the Liapunov function (2, 5) obtained in Sect, 2, i. e, we shall apply the corresponding
control '»;® as given by (2.17). The integrand function of the minimized functional will

become Ve
Q = Qy — (3.3
1 Z 3;1-: Qi

Here @; are determined in accordance with (1,15),(1.16). Function Q must be posi-
tive definite in g, f;; . However, it is now also dependent on the variables R, ¥, 0,8 ¥,
@ which appear in the terms of at least third order of smailness and may, in principle,
disturb the sign definiteness of Q, (2,3). The principal part of Q, consists of a sign defi-
nite quadtatic form in g;, Bix, while the principal part of the sum appearing in (3. 3)
contains a quadratic form in ¢, By of variable signature, whose coefficients are analy-
tic functions of perturbations R, ¥, A", ¥, @ vanishing when R =0, ¥ = 0, R = 0,
¥ = @ = 0. when the perturbations are small the above coefficients are arbiwarily
small, consequently the function Q is positive definite [9] in ¢i, Bix. So the control
(2.17),(3.1),(83.2) is the solution of our problem of stabilization of motion (1.18), pro~
vided that the center of mass of the gyrostat moves along a stable circular orbit.

To prove that the motion (1,18) is stable in R, ¥, R', ¥, @', we shall use the reduc-
tion principle [9, 12], regarding the variables R, ¥, R’, ¥', @ as critical, and g¢i, Byx as
noncritical, According to this principle, the problem of stability can be solved using the
"abridged” system of equations in R, ¥, R, ¥, @ given by (1.12) with the following

conditions : ;=0 Bik=0 (,x=1122 (3.4

The abridged system of equations describes therefore the motion of the gyrostat in a
central force field in the absence of intemal controls dependent on g¢;, Pix. Stability of
the zero solution

R=0,¥=0 R=0¥=0=0 (3.5)

of this system with respect to R, ¥, R", ¥", @' can easily be established with use of the
Liapunov function [3] W = W — o¥a - Mm W, (3.6)
composed of the energy W, and the kinetic moment W, integrals relative to the O04X4
axis, Calculations performed indicate that for sufficiently large ¢ > 0 the function W
is positive definite in all the variables listed above. Stability of the solution (3. 5)
implies the stability of the motion (1.18) in all variables by virtue of the complete
equations (1,13). Thus, after slight alterations, we can use the Liapunov function (2. 5)
to obtain the control »°; (3.1). We note that the motion (1. 8),(1.18) considered is not
stable in @ since an arbitrarily small perturbation @' = Aw, leads to the increase in
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the value of @ according to the rule
O = (Awy) ¢ 3.7

The variable ® appears only as the argument of the bounded functions sin (w,¢ + @)
and cos (@,¢ + @), This does not violate our previous deductions based on the stability
of the stationary motion under investigation with respect to the variables R, ¥, R" ¥, @',
but makes necessary the replacement of the argument o,¢t -+ ® of the periodic functions
in (1,13) by (0, + Aw,) t. Therefore instead of the coefficients ajs, bjs, ¢js (j = 1, 2)
of the Liapunov function (2, 7) we have ajs(Amn), bjs (Awr), ¢jp(Aw,) where the argument
;¢ has been replaced by (w0, + Aw;) ¢. This also applies to the functions (1,17), (2. 3).
Consequently the control (2.17),(3.1),(3.2),1.e.

u = 4;° (Awy) + (C — I) [Uy (Awy) cos o*t + U, (Aw,) sin o*t]
Uy = ug° (Awy) + (€ — I) [— U, (Aw,) sin 0*t + U, (Aw,) cos o*t]
ug = ug® (Aw;)

ensures under the conditions (2,14), (2.15) optimal stabilization of the motion (1. 8),
(1.18); the integrand function of the minimizing functional has the form (3. 3). We note
that in practice, when R, is very large, the corrective control (3, 2), (1.17) stipulated by
the perturbability of the orbit of the center of mass of the gyrostat can be arbitrarily
small and has no practical significance,

The present paper deals with optimal stabilization of only one of the possible stationary
motions of a gyrostat and employs internal control moments, however the method deve-
loped makes possible, in principle, solution of the problems on stabilization of various
positions of relative equilibrium and of stationary motions of a gyrostat in the Newtonian
force field,
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As we know, the solution of the equations of motion of a heavy rigid body about 2 fixed
point in the Hess' case
aVAB ZC +esVC{A~B)y=10, =20

(4, B, C are the principal momeants of inertia and ¢, ¢, ¢; are the coordinates of the
center of gravity of the body) is not reducible to quadratures; it is reduced to the solution
of the Ricatti differential equation . This complicates investigation of the corresponding
motion considerably,

A general qualitative pattern of motion of a body was first given for the Hess® case
by N, E, Zhukovskii [1] and followed in more detail by Kovalev [2, 3] who employed
the method of moving hodograph (*).

However both these geometrical interpeetations are fairly complicated, and give rise
to severe difficulties when it comes to determining the motion of a specific rigid body
under concrete initial conditions,

In the present paper we study the Hess' case of the motion of a rigid body under the
assumption that at the initial instant a high angular velocity v, about some axis, is im-
parted to the body, We obtain explicit relations connecting the Euler angles with time,
and these enable us to analyze in detail the motion of the Hess gyroscope without much
difficulty,

1, We construct the equations of motion of a rigid body in the associated rectangular
coordinate system Ozys whose Oz~axis passes through the center of gravity of the body,
while the Oy and Oz axes are chosen in such a manner (this is always possible in the
Hess case [4]) that the expression for the kinetic energy of the body becomes

2T = a2 + a (y? + 2%) — 2byz
8y = Ay (Apds) 7 @ = A%, b= A1 (dpdsy) !

Here =z, y, z are the projections of the kinetic moment of the body on the Ozyz axes,
and Ay, Agg Agg Ay are the components of the corresponding inertia tensor for which
the relation A® = 4, (4 — 44) hoilds,

We also note the following expressions for the projections w;, @y @3 of the angular
velocity : Wy = — by, Wy = ay, W3 = 4z

*) See also A, M, Kovalev's "Geometrical investigation of certain solutions of the problem
of motion of a body with a fixed point”, Candidate’s dissertation, Donetsk State Univ.,
1969,



